Package: ashr 2.2-66
ashr: Methods for Adaptive Shrinkage, using Empirical Bayes
The R package 'ashr' implements an Empirical Bayes approach for large-scale hypothesis testing and false discovery rate (FDR) estimation based on the methods proposed in M. Stephens, 2016, "False discovery rates: a new deal", <doi:10.1093/biostatistics/kxw041>. These methods can be applied whenever two sets of summary statistics---estimated effects and standard errors---are available, just as 'qvalue' can be applied to previously computed p-values. Two main interfaces are provided: ash(), which is more user-friendly; and ash.workhorse(), which has more options and is geared toward advanced users. The ash() and ash.workhorse() also provides a flexible modeling interface that can accommodate a variety of likelihoods (e.g., normal, Poisson) and mixture priors (e.g., uniform, normal).
Authors:
ashr_2.2-66.tar.gz
ashr_2.2-66.zip(r-4.5)ashr_2.2-66.zip(r-4.4)ashr_2.2-66.zip(r-4.3)
ashr_2.2-66.tgz(r-4.4-x86_64)ashr_2.2-66.tgz(r-4.4-arm64)ashr_2.2-66.tgz(r-4.3-x86_64)ashr_2.2-66.tgz(r-4.3-arm64)
ashr_2.2-66.tar.gz(r-4.5-noble)ashr_2.2-66.tar.gz(r-4.4-noble)
ashr_2.2-66.tgz(r-4.4-emscripten)ashr_2.2-66.tgz(r-4.3-emscripten)
ashr.pdf |ashr.html✨
ashr/json (API)
NEWS
# Install 'ashr' in R: |
install.packages('ashr', repos = c('https://stephens999.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/stephens999/ashr/issues
Last updated 6 months agofrom:6786aa1511. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win-x86_64 | OK | Nov 11 2024 |
R-4.5-linux-x86_64 | OK | Nov 11 2024 |
R-4.4-win-x86_64 | OK | Nov 11 2024 |
R-4.4-mac-x86_64 | OK | Nov 11 2024 |
R-4.4-mac-aarch64 | OK | Nov 11 2024 |
R-4.3-win-x86_64 | OK | Nov 11 2024 |
R-4.3-mac-x86_64 | OK | Nov 11 2024 |
R-4.3-mac-aarch64 | OK | Nov 11 2024 |
Exports:ashash_poisash.workhorseashcicalc_loglikcalc_logLRcalc_mixsdcalc_null_loglikcalc_null_vloglikcalc_vloglikcalc_vlogLRcdf_postcdf.ashcomp_cdfcomp_cdf_postcomp_denscomp_meancomp_postmeancomp_postmean2comp_postprobcomp_postsdcomp_sdcompute_lfsrcxxMixSquaremdensdlogfestimate_mixpropget_densityget_fitted_gget_lfdrget_lfsrget_loglikget_logLRget_npget_pi0get_pmget_post_sampleget_ppget_psdget_qvalueget_svalueigmixlik_binomlik_logFlik_normallik_normalmixlik_poislik_tloglik_convmixcdfmixEMmixIPmixpropmixSQPmixVBEMmy_e2truncbetamy_e2truncgammamy_e2truncnormmy_e2trunctmy_etruncbetamy_etruncgammamy_etrunclogfmy_etruncnormmy_etrunctmy_vtruncnormncompnormalmixpcdf_postplogfplot_diagnosticpm_on_zeropost_sampleposterior_distpostmeanpostmean2postsdpruneqval.from.lfdrset_datatnormalmixunimixvcdf_postw_mixEM
Dependencies:etrunctinvgammairlbalatticeMatrixmixsqpRcppRcppArmadilloSQUAREMtruncnorm